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The shewanellae are ubiquitous in aquatic and sedimentary systems that are chemically stratified on a permanent or seasonal basis.
In addition to their ability to utilize a diverse array of terminal electron acceptors, the microorganisms have evolved both common
and unique responding mechanisms to cope with various stresses. This paper focuses on the response and adaptive mechanism of
the shewanellae, largely based on transcriptional data.

1. Introduction

Stress is an inevitable part of the life of all organisms. This
is especially true about microorganisms, which reside and
thrive in almost all environments on earth, including some
considered extremely harsh [1]. Common environmental
factors that affect the activities of microorganisms include
temperature, pH, water availability, nutrient limitation, pres-
ence of various chemicals, osmolarity, pressure, and radia-
tion [2]. Consequently, for every microorganism the ability
to adapt rapidly to changes in environments is essential for
its survival and prosperity. Regulation that modulates the
microbial adaptation to environmental disturbances is rather
complex. The most important and efficient control occurs
at the level of transcription. Many single stress-induced
regulatory circuits have been identified, which enable cells
to cope with specific stresses. However, given that microbial
cells live in a dynamic environment where multiple factors
fluctuate constantly at the same time, stress responses are
generally carried out by a regulatory network composed of
a series of individual circuits which are highly connected [3].

Most of our understanding of microbial stress response
mechanisms has come from the study of model microor-
ganisms, particularly Escherichia coli and Bacillus subtilis.
Extensive physiological and genetic analyses of the stress
response systems in these two bacteria have helped us to
elucidate the complexity of the process, function of critical
proteins, and regulation [4]. While model organisms will
continue to provide insights into the fundamental properties

of the stress response systems, efforts should be extended to
other microorganisms, especially those that are of scientific,
environmental, and economic importance.

As one of representatives, the family of Shewanellaceae
(order Alteromonadales, class γ-proteobacteria) is emerging
in recent years. The genus Shewanella consists of rod-shaped,
Gram-negative, aerobic or facultatively anaerobic, polarly
flagellated, readily cultivated γ-proteobacteria [5–8]. While
many Shewanella isolates remain uncharacterized, 52 species
have been recognized to date [9]. Shewanellae are renowned
for its ability to use a diverse range of electron accep-
tors for anaerobic respiration, including fumarate, nitrate,
nitrite, thiosulfate, elemental sulfur, trimethylamine N-oxide
(TMAO), dimethyl sulfoxide (DMSO), Fe(III), Mn(III) and
(IV), Cr(VI), U(VI), As(V), V(V), and others [10, 11]. As
a result of this property, Shewanellae have drawn much
attention in the fields of bioremediation, biogeochemical
circulation of minerals, and bioelectricity [12, 13]. In
addition, Shewanellae have now served as the model for
ecological and evolutionary studies at the whole genome level
because of its diverse habitats and the availability of up to 26
genome sequences [14, 15].

A number of Shewanella strains are currently under
physiological investigation [11]. However, stress responses
have focused nearly exclusively on Shewanella oneidensis, the
first genome of the shewanellae to be sequenced [16]. The
availability of the genome sequence allowed development
of high-throughput technologies such as microarrays and
proteomics tools, with which an array of assays has been
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carried out to decipher the ability of S. oneidensis to respond
to and survive external stresses. While impacts of most
of common environmental factors have been examined,
oxidative stress imposed by H2O2 is surprisingly untouched.
In this paper, we consider all insights into the stress response
mechanisms revealed thus far in S. oneidensis and broaden
our discussion to other sequenced species if necessary.

2. Stress Responses to Temperature Fluctuation

Variation in growth temperature is a common stress encoun-
tered in nature. Stress response to sudden fluctuation
in growth temperature, has become a model system for
studying the impact of environmental stresses on biological
systems. The hallmark of this adaptive cellular response is
the induction of a limited set of proteins, called Heat shock
proteins (Hsps) or Cold shock proteins (Csps). In general,
Hsps play important roles in protein folding, degradation,
assembly of protein complexes, and transport of proteins
across membranes whereas Csps function as RNA chaperons
to regulate ribosomal translation, rate of mRNA degradation
and termination of transcription [17–19].

Using whole-genome DNA microarrays, temporal gene
expression profiles of S. oneidensis MR-1 in response to tem-
perature variations have been investigated [20, 21]. Expres-
sion profiles indicate that temperature fluctuation has a
pleiotropic effect on the bacterial transcriptomes. Both heat
and cold shock responses appear to share a couple of
common features, including that approximately 15% of the
total genes are significantly affected (P < 0.05) over a 25-
min period, that the global changes in mRNAs are rapid
and transient, and that a similar set of proteins are induced
to manage energy production and protein damage. For
instance, most of genes encoding enzymes in the Entner-
Doudoroff pathway and the pentose cycle are highly induced
upon a temperature alteration.

In the case of heat shock response, two lines of evidence
suggest that S. oneidensis copes with the situation with
mechanism similar to that employed by E. coli. First, the
majority of the genes that showed homology to known
Hsps in E. coli such as DnaK, DnaJ, GroEL, GroES, GrpE,
HtpG, and Lon/La proteases were highly induced. Second,
the identified σ32 consensus sequences (CTTGAAA-13/15bp-
CCCCAT) of both bacteria for heat shock gene promoters are
virtually the same (Figure 1), indicating that the induction
of most Hsps owns to a rapid and transient increase in the
intracellular concentration of an alternative σ factor, σ32

encoded by rpoH. Nevertheless, novel findings are not scarce.
After numerous attempts, we failed to remove rpoH from
the genome, implicating that σ32 is essential in S. oneidensis
(unpublished result). Additionally, some hypothetical pro-
teins (i.e., SO2017) are under the control of σ32, suggesting
that S. oneidensis recruits new proteins to overcome increased
temperature (Table 1).

Unlike E. coli, most Shewanella strains are psychrotol-
erant. In terms of the canonical Csps S. oneidensis pos-
sesses three (of which two (SO1648 and SO2787) are cold
inducible) whereas E. coli has nine (of which four are cold
inducible) [19]. Both SO1648 and SO2787 are important

in growth at low temperatures evidenced in the mutational
analysis [21]. The S. oneidensis genome carries two more
genes encoding Csd(cold shock domain)-containing proteins
(SO0733, 203 aa; SO1732, 224 aa) whose C-terminal lacks
sequence similarity to any known proteins. Intriguingly,
such a structure has been found only in eukaryotes, with
the exception of Mycobacterium [24]. Neither SO0733 nor
SO1732 is found to be induced upon a decrease in tempera-
ture or influences growth at low temperature, indicating that
these Csd-containing proteins may not be involved in cold
stress response.

S. piezotolerans WP3 is another Shewanella that has
been studied in respect of response to low temperatures.
Strikingly, none of its Csps are cold inducible, suggesting
that these proteins may not play an indispensible role in the
process [25]. Instead, the organism utilizes other strategies to
overcome temperature downshifts. These include increased
production of EPA (eicosapentaenoic acid) and BCFA
(branched-chain fatty acid) [26], induced expression of RNA
helicase DeaD which may facilitate transcription, morpho-
logical changes in cell membrane, and elevated assembly of
lateral flagella (The organism possesses both polar and lateral
flagella.) [25]. In addition, a novel filamentous phage (SW1)
is found to be significantly induced at low temperature but
the significance of this event in the cold adaptation of S.
piezotolerans WP3 is unknown [27].

3. Stress Responses to Acidic and Alkaline pH

Microorganisms live in a volatile environment where extra-
cellular pH changes frequently. To minimize the acid- or
alkaline-induced damage, various adaptive strategies have
evolved [28, 29]. Studies on E. coli have revealed that
bacterial cells activate outward H+ pumps such as K+/proton
antiporters in response to acute cytoplasmic acidification
and sodium proton antiporters, which bring in 2 H+ for each
Na+ extruded, to adapt to alkaline pH in the presence of
Na+. To survive upon prolonged acid stress exposure, cells
rely on the arginine and glutamate decarboxylase/antiporter
systems, which are thought to counteract external acidifica-
tion through the consumption of intracellular protons and
the generation of alkaline amines. Additional acid tolerance
responses include regulation of proton permeability by
induction of membrane proteins and lipid modification
enzyme. In the case of alkaline stress, amino acid metabolic
enzymes such as tryptophan deaminase (TnaA) and o-
acetylserine sulfhydrylase A (CysK) are induced to reverse
alkalinization by metabolizing amino acids to produce acidic
products.

The response of S. oneidensis to acid and alkaline stresses
intersects with other stresses evidenced by elevated expres-
sion of RpoS, a central regulator of stationary-phase gene
expression [30]. It is reasonable to speculate that S. oneidensis
cells upon altered pH mimic those at the stationary phase.
In respect of response to acidic pH, the mechanism of
S. oneidensis is fundamentally different from that of E.
coli. The most important and effective player of E. coli in
mediating acid resistance is the glutamate-dependent (Gad)
system, which is missing in all sequenced Shewanellae [31].
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Figure 1: Comparison of consensus σ32-recognition sequences of E. coli and S. oneidensis. The E. coli and S. oneidensis sequences used were
from the published reports by Nonaka et al. [22] and Gao et al. [20], respectively. The sequences were initially aligned by clustalx and the
sequence logo was prepared using public software at http://www.bioinf.ebc.ee/EP/EP/SEQLOGO/.

Additionally, none of genes encoding H+ ex-pumps are
found to be induced. Instead, proteins showing substantial
induction are rather diverse, including those functioning in
cell envelope structure (e.g., csg genes), glycogen biosynthesis
(glg operon), fatty acid metabolism (fadBA), glutamate
synthesis (gltBD), phosphate transport (so1724 and pstB-
1), and regulation (e.g., rpoS and phoU). This observation
indicates that the molecular effects of acute acidic pH
are profound and multifarious. Upon alkaline pH, as in
E. coli Na+/H+ antiporter systems (NhaA) are particularly
important in maintaining a pH-homeostatic mechanism,
thus enabling S. oneidensis to survive and adapt to external
alkaline conditions.

4. Stress Responses to Osmolarity

The bacterial response to hypertonic stress includes a range
of mechanisms. The most important one is regulation of
aquaporins in the outer membrane for water intake by the
stationary-phase sigma factor, RpoS [32]. It is common that
upon the stress condition K+ uptake is activated and K+ ions
are maintained at high levels. Additionally, cells accumulate
neutral, polar, small molecules, such as glycine betaine
(GB), proline, trehalose, or ectoine [33]. These compatible
solutes serve as osmoprotectants and are synthesized and/or
imported into the cell. Many Shewanella species are marine
microorganisms and therefore are naturally tolerant to
relatively high levels of salt. Although some like S. oneidensis,
are obtained from freshwater environments, they are able to
grow in the presence of up to 0.6 M NaCl [34].

The primary response of S. oneidensis to hyperosmotic
conditions is similar to E. coli. Genes encoding K+ uptake
proteins, Na+ efflux system components, and glutamate
synthesis are found to be highly induced. Nonetheless, some
novel mechanisms are observed. Genes encoding proteins

involved in accumulation of compatible osmolytes are either
missing in the genome or transcriptionally unaffected when
encountered stress. Interestingly, genes encoding TCA cycle
are particularly active, probably producing much needed
ATP for ion transport. This may also explain that S. onei-
densis shows reduced motility and chemotaxis responding
capability under the stress given that the assembly of flagella
is extremely energy consuming [34].

5. Stress Responses to Radiation

Radiation is potentially lethal and mutagenic to all organ-
isms. Although DNA is the major chromophore in general,
effects of radiation are in fact pleiotropic [35, 36]. S.
oneidensis, one of the most radiation-sensitive organisms
known so far, is approximately 1 order of magnitude more
susceptible to all wavelengths of solar UV, UV, and ionizing
radiation than E. coli [35, 37–40]. This is strikingly because
the organism similar to E. coli possesses the complete set of
genes for photo-reactivation, and nucleotide excision repair,
and SOS response, primary mechanisms that protect cells
from DNA damages and radiation-induced oxidative stress
[16, 41, 42]. All of these S. oneidensis genes appear to be
functional and crucial in the cellular response to radiation,
supported by significant upregulation in transcriptional
analyses. It is interesting to note that Shewanella strains
vary significantly in their susceptibility to radiation although
compared to E. coli they are still much less resistant. The
general trend is that the more radiation exposure is in the
habitat where the organisms are isolated the less sensitive
they are [37]. For instance, S. oneidensis MR-1 from lake
sediment and S. putrefaciens 200 from a crude oil pipeline
are more sensitive to radiation than S. algae from the surface
of a red alga and S. oneidensis MR-4 from the surface of the
Black Sea [33].

http://www.bioinf.ebc.ee/EP/EP/SEQLOGO/
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It has been suggested that the hypersensitivity to radia-
tion may be in part due to the activation of prophage [38–
40]. Radiation has been used as a standard approach to
induce prophage in a variety of bacteria [43, 44]. In S. onei-
densis, upon radiation the majority of LambdaSo, MuSo1,
and MuSo2 genes are induced and phage particles have been
found in the cultures, indicating that a great number of
cells are lysed by lytic phages. It has also been implicated
that a large number of iron-containing proteins may be
partially accountable for the susceptibility. Compared to E.
coli which hosts only five to seven cytochrome c proteins,
S. oneidensis contains 41 such proteins, some of which are
electron transport proteins and essential in respiration [45,
46]. Damages on these proteins by reactive oxygen species
(ROS) generated in cells upon radiation would likely cause
two detrimental results [47]. First, damaged proteins per se
may be dysfunctional, directly reducing ability to survive or
thrive. Second, damaged proteins release irons into cultures,
which further induce ROS production [48]. This second
wave of ROS may be more fatal because it comes at the
onset of recovery of seriously damaged cells. Furthermore,
the finding that the intracellular Mn/Fe concentration ratios
correlate well with resistance to radiation may explain the
hypersensitivity of S. oneidensis, which has the lowest ratio
among bacteria tested so far [35, 49].

6. Stress Responses to Heave Metals

Many of metal elements are required for microbial growth
mostly as cofactors in metabolic pathways. However, they
exert deleterious effects under conditions of elevated con-
centration [50]. Shewanellae have attracted much attention
because of their ability to reduce metal ions including
chromium, cobalt, iron, manganese, technetium, uranium,
and vanadium, some of which are not needed and highly
toxic for most organisms [10, 51, 52]. At the low level these
metal ions are taken as electron acceptors by cells and mildly
induced some stress-associated genes [53]. However, at the
high concentration some of them elicited a distinctively
different pattern [54–60]. The cellular resistance mecha-
nisms displayed by microorganisms are diverse and include
biosorption, diminished intracellular accumulation through
either direct obstruction of the ion uptake system or active
chromate efflux, precipitation, and reduction of metals to less
toxic form. Multiple regulatory circuits are found to work
together to cope with the stress response of S. oneidensis
to heavy metal compounds. The major ones include those
modulating oxidative stress protection, detoxification, pro-
tein stress protection, iron acquisition, and DNA repair [50].

The molecular response of S. oneidensis to heavy metal
shock elicits a distinctively different transcriptional profile
compared with metal reduction [53–60]. This observation is
consistent with that metal reduction and toxicity resistance
mechanisms are to be unlinked cellular processes [61].
Responses of S. oneidensis to acute stresses imposed by a
variety of heavy metals share a common strategy: survive first
and then exert both general and specific stress responses. As
a result, S. oneidensis up-regulates its resistance-nodulation-
cell division (RND) protein family genes that facilitate cation

export and thus confer heavy metal resistance. Once the
first line of defense is initiated, cells employ both general
and specific stress responses that are inseparable from each
other to recover from the crisis. Alternative sigma factors
including RpoS, RpoH, RpoE, along with stress-response-
related genes are induced, leading to induction of a variety
of detoxification, resistance, and transport functions. Such
coordinated expression of stress response and detoxification
mechanisms in S. oneidensis may offer an advantage to thrive
in anoxic metal-reducing conditions in aquatic sediment and
submerged soil systems where substantial amounts of heavy
metals can be generated.

Two specific responding mechanisms are particularly
worth noting. The first is that genes/proteins involved in
iron transport are transcriptionally active and implicated to
play an important role in the process. Although induction
of siderophore biosynthetic and iron transport genes may
not be a direct consequence of intracellular iron limitation,
several lines of evidence suggest that it is more likely to be
indirect by interfering with the Fur (ferric uptake regulator)
protein, which eventually results in derepression of the
iron regulon. Several reports have demonstrated that Co2+,
Mn2+, or other divalent cations interact with the Fur-binding
sites [62, 63]. Moreover, iron-chelating siderophores from
other microorganisms have been shown to be able to bind
other metals, such as thorium, uranium, vanadium, and
plutonium [64, 65]. By increasing siderophore production,
cells can reduce toxicity of heavy metals by sequestration.
The other is that sulfur transport and assimilation is
promoted. While the underlying mechanism is currently
unknown, an explanation is offered. In S. oneidensis, reactive
oxygen species (ROS) produced in cells by heavy metal
stresses can damage iron-containing proteins. As cysteine
residues in these proteins are essential to their functions,
an extra mount of cysteine is needed for protection. To this
end, cells elevate transportation of inorganic sulfate which
is reduced and incorporated into bioorganic compounds via
assimilatory sulfate reduction, which is the major route of
cysteine biosynthesis in most microorganisms [66].

7. Concluding Remarks

As a potential strategy for the reductive immobilization
or detoxification of environmental contaminants, in situ
bioremediation has received much interest and attention
in last 20 years and are becoming more prevalent today.
As its intrinsic feature, the application puts its work force,
mostly bacteria, “in situ” facing the unpredictability of
individual microbial processes and constant fluctuations in
environments. Thanks to the availability of the S. oneidensis
genome sequence, stress responses of the microorganism
have been extensively investigated, generating a handful of
insights into mechanisms adopted to cope with detrimental
conditions. Nonetheless, adaptive mechanisms of Shewanella
to environmental stresses are still a large playing field for
three reasons. First, a number of common stressful agents,
especially reactive oxygen species, are not visited. Second,
the complex components and regulation in the bacterial
stress responses discussed in this paper are mostly based on
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transcriptional profiling and thus experimental validation
is urgently warranted. Last, but definitely not the least, the
genus is composed of members which are not only isolated
from extremely diverse habitats but also lack unifying
phenotypic features, prompting exploration to be extended
to other ecological groups of the Shewanellae.
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